
AP Calculus—Integration Practice

I. Integration by substitition.

Basic Idea: If u = f(x), then du = f ′(x)dx.

Example. We have

∫
x dx

x4 + 1

u = x2

=
dx = 2x dx

1

2

∫
du

u2 + 1

=
1

2
tan−1 u+ C

=
1

2
tan−1 x2 + C

Practice Problems:

1.
∫
x3
√

4 + x4 dx

2.
∫

dx

x lnx

3.
∫

(x+ 5) dx√
x+ 4

4. In each integral below, find the integer n that allows for an integration by sub-
stitution. Then perform the integration.

(a)
∫
xn
√

1− x4 dx

(b)
∫

xn√
1− x4

dx (there are two very natural choices for n).

(c)
∫

xn

1 + x10
dx (there are two very natural choices for n).

(d)
∫

x6

1 + xn
dx

(e)
∫
xne−x

2

dx

(f)
∫
xne2x

5

dx

(g)
∫
x5
√

1− xn dx



(h)
∫

x6

√
1− xn

dx

(i)
∫

dx

xn lnx

(j)
∫

dx

xn(lnx)7

(k)
∫
xn sin(x6) dx

(l)
∫

sinn x cosx√
3 + sin4 x

dx

(m)
∫

sin3 x cosx√
3 + sinn x

dx

II. Integration by Parts:

Basic Idea:
∫
u dv = uv −

∫
v du

(Try to substitute u so that
du

dx
is simpler than u and so that v is no more complicated

than dv.)

Example. We have

∫
x sinx dx

u = x, dv = sinx dx

=
du = dx, v = − cosx dx

−x cosx+

∫
cosx dx

= −x cosx+ sinx

Notice that in the above, setting u = x yields
du

dx
= 1 (i.e., du = dx), which is simpler

and dv = sinx dx which gives v = − cosx, which is no more complicated.

Practice Problems:

1.
∫
xe−x/10 dx

2.
∫
x2e−x/10 dx.

3.
∫
x2 lnx dx

4.
∫
xn lnx dx (n is an integer)



5.
∫
x2 sinx dx

6.
∫
x3e−x

2

dx

7.
∫
x3
√
x2 + 1 dx

8. Assume that
∫
f(x) dx = g(x), that

∫
g(x) dx = h(x) and compute

(a)
∫
x3f(x2) dx

(b)
∫
x2n−1f(xn) dx

9.
∫

sin−1 x dx

10.
∫ (

sin−1 x
)2
dx

11.
∫

tan−1 x dx

12.
∫

sec3 θ dθ (Hint: write sec3 θ = sec θ(1 + tan2 θ) and integrate sec θ tan2 θ by

parts.)

III. Trigonometric Substitutions.

Basic Idea:

a2 − x2 For expressions like a2 − x2 substitute x = a sin θ. Then x2 − x2 = a2 cos2 θ
and dx = a cos θ dθ.

a2 + x2 For expressions like a2 + x2 substitute x = a tan θ. Then x2 + x2 = a2 sec2 θ
and dx = a sec2 θ dθ.

x2 − a2 For expressions like x2 − a2 substitute x = a sec θ. Then x2 − a2 = tan2 θ,
and dx = sec θ tan θ dθ.

Example 1. We have



∫ √
4− x2 dx

x = 2 sin θ

=
dx = 2 cos θ dθ

4

∫
cos2 θ dθ

= 2

∫
(1 + cos 2θ) dθ

= 2θ + sin 2θ + C

= 2 sin−1
(x

2

)
+ 2 sin θ cos θ + C

= 2 sin−1
(x

2

)
+

1

2
x
√

4− x2 + C

SECOND EXAMPLE. In many integrations involving a trig substitution, there is the
need to integrate sec θ. This is easy but requires a trick:

∫
sec θ dθ =

∫
sec θ(sec θ + tan θ) dθ

sec θ + tan θ

u = sec θ + tan θ

=
du = sec θ(sec θ + tan θ) dθ

∫
du

u

= ln |u|+ C

= ln | sec θ + tan θ|+ C

In an entirely similar fashion, one shows that
∫

csc θ dθ = − ln | csc θ + cot θ|+ C.

Example 2. Here’s one that uses the above ideas.

∫ √
a2 − x2 dx

x

x = a sin θ

=
dx = a cos θ dθ

a

∫
cos2 θ dθ

sin θ

= a

∫
(1− sin2 θ) dθ

sin θ

= a

∫
(csc θ − sin θ) dθ

= −a ln | csc θ + cot θ|+ a cos θ + C

=
√
a2 − x2 − a ln

∣∣∣a+
√
a2 − x2

x

∣∣∣+ C

Practice Problems:



1.
∫ √

9− x2

x2
dx

2.
∫

dx

x
√

1− x2

3.
∫

dx

x
√
a2 + x2

4.
∫ √

4 + x2 dx (Hint: see problem 12 page 3.)

5.
∫

dx

a2 − x2
(It might be easier to do this by partial fractions.)

6.
∫ √

x2 − a2

x
dx

7.
∫

dx

(a2 + x2)2

8.
∫

sin−1 x dx (Let x = sin θ)

9.
∫ (

sin−1 x
)2
dx

10.
∫

tan−1 x dx

IV. Integration by Partial Fractions.

Basic Idea: This is used to integrate rational functions. Namely, if R(x) =
p(x)

q(x)
is

a rational function, with p(x) and q(x) polynomials, then we can factor q(x) into a
product of linear and irreducible quadratic factors, possibly with multiplicities. For
each power (x−α)n of a linear factor, the expansion of R(x) will contain terms of the
form

a1

x− α
+

a2

(x− α)2
+ · · ·+ an

(x− α)n
,

where a1, a2, . . . , an are all real constants. For each power (x2 + αx + β)m of an
irreducible quadratic factor, then the expansion of R(x) will contain terms of the
form



a1x+ b1
x2 + αx+ β

+
a2x+ b2

(x2 + αx+ β)2
+ · · ·+ amx+ bm

(x2 + αx+ β)m
,

where a1, a2, . . . , am and b1, b2, . . . , bm are real constants.

The determination of the constants above is a purely algebraic process. For exam-

ple, in decomposing the rational function R(x) =
x+ 1

(x− 2)(x2 + 4)
we set this up as

follows:

x+ 1

(x− 2)(x2 + 4)
=

a

x− 2
+
bx+ c

x2 + 4
.

At this juncture, there are a number of approaches. One is to multiply through, clear-
ing all denominators and equating coefficients in the resulting polynomial equation:

x+ 1 = a(x2 + 4) + (bx+ c)(x− 2).

This quickly yields

a+ b = 0,

−2b+ c = 1,

4a− 2c = 1,

from which we conclude that a = 3/8, b = −3/8, and c = 1/4.

To compute the indefinite integral
∫
R(x) dx, we need to be able to compute integrals

of the form ∫
a

(x− α)n
dx and

∫
bx+ c

(x2 + αx+ β)m
dx.

Those of the first type above are simple; a substitution u = x− α will serve to finish
the job. Those of the second type can, via completing the square, be reduced to

integrals of the form
bx+ c

(x2 + a2)m
dx. This involves a sum of two integrals: those of the

form
∫

bx

(x2 + a2)m
dx can be computed via the substitution u = x2 + a2; those of the

form
∫

c

(x2 + a2)m
dx can be handled by the appropriate trigonometric substitution

(viz., x = a tan θ).

From the above work, we may now finish our example.

∫
x+ 1

(x− 2)(x2 + 4)
dx =

3

8

∫
dx

x− 2
− 1

8

∫
3x− 2

x2 + 4
dx

=
3

8
ln |x− 2| − 3

16
ln(x2 + 4) +

1

8
tan−1

(x
2

)
+ C.



Practice Problems:

1.
∫

5x− 3

x2 − 2x− 3
dx

2.
∫

6x+ 7

(x+ 2)2
dx

3.
∫

2x3 − 4x2 − x− 3

x2 − x2− 3
dx

4.
∫

dx

x(x2 + 1)

5.
∫ (

1

x2 + 1
− 1

x2 − 2x+ 5

)
dx

6.
∫
x3 + 2x2 + 2

(x2 + 1)2
dx

V. The t = tan 1
2
θ substitution

Basic Idea: This technique is particularly useful in computing definite integrals hav-

ing integrands of the form
1

a+ b cos θ
or

1

a+ b sin θ
. If we let t = tan 1

2
θ, then using

the double-angle identity for

the tangent:

tan 2A =
2 tanA

1− tan2A
,

we obtain immediately that

tan θ =
2t

1− t2
.

���������������

θ

1− t2

2t

From the picture depicted to the right, we obtain, therefore, that

sin θ =
2t

1 + t2
and that cos θ =

1− t2

1 + t2
.

EXAMPLE. We use the above to compute
∫ π/2

0

4

3 + 5 sin θ
dθ.

With the substitution t = tan 1
2
θ, we have

dt

dθ
= 1

2
sec2 1

2
θ =

1 + t2

2
. From this it follows

that dθ =
2 dt

1 + t2
; we now proceed as follows:



∫ π/2

0

4

3 + 5 sin θ
dθ

t = tan 1
2
θ

=

∫ 1

0

4

3 + 10t/(1 + t2)
× 2

1 + t2
dt

=

∫ 1

0

8

3t2 + 10t+ 3
dt

=

∫ 1

0

(
3

3t+ 1
− 1

t+ 3

)
dt

= ln(3t+ 1)− ln(t+ 3)
∣∣∣1
0

= ln 3

Practice Problems:1

1.
∫ π/2

0

3

1 + sin θ
dθ

2.
∫ 2π/3

0

3

5 + 4 cos θ
dθ

3.
∫ π/2

−π/2

3

4 + 5 cos θ
dθ

4.
∫ π/2

0

5

3 sin θ + 4 cos θ
dθ

VI. Differential Equations—Variables Separable.

Basic Idea: The IB syllabus for Calculus (Core Topic 7) contains a component relating
to a special class of differential equations, namely those having the variables separa-

ble. Specifically, this relates to those differential equations
dy

dx
= f(x, y), where the

function f(x, y) can be written in the form f(x, y) = g(x)h(y), for suitable functions g
and h. Such a differential equation can, in principle, yield an implicit solution for y
via separating the variables and integrating:

dy

dx
= g(x)h(y)⇒ dy

h(y)
= g(x) dx⇒

∫
dy

h(y)
=

∫
g(x) dx.

Assuming that the integrations can be performed (which is a significant assumption!)
we arrive at an equation of the type H(y) = G(x), which defines y implicitly as a
function of x.

1These (and the example above) have been lifted from Sadler and Thorning, pp 500–501:



EXAMPLE 1. Consider the differential equation
dy

dx
= −3x2y, subject to the initial

condition y(0) = 2. We proceed as above:

dy

dx
= −3x2y ⇒ dy

y
= −3x2 dx⇒

∫
dy

y
= −

∫
3x2 dx⇒ ln |y| = −x3 + C.

The above can be rendered more explicit by exponentiating both sides and setting
K = eC (an arbitrary constant); the result is y = Ke−x

3 . Finally, use the initial condi-
tion y(0) = 2: 2 = Ke0 = K, and so the resulting solution is y = 2e−x

3 .

EXAMPLE 2. This time, we consider the so-called logistic differential equation

dy

dx
= ay(1− y), where a > 0 is a constant, y(0) = .2.

Upon separating the variables, we obtain∫
dy

y(1− y)
=

∫
a dx.

Next, using the partial fraction decomposition
1

y(1− y)
=

1

y
+

1

1− y
, we obtain∫ (

1

y
+

1

1− y

)
dy =

∫
a dx

from which it follows that

ln |y| − ln |1− y| = ax+ C ⇒ y

1− y
= Keax.

Solving for y in terms of x is fairly easily done; the result is

y =
Keax

1 +Keax
=

1

1 +Be−ax
,

where B = K−1, again, an arbitrary constant.

We conclude with a few words of terminology. What we have considered above are
usually called ordinary differential equations, typically abbreviated ODE. These are
to be distinguished from partial differential equations, which, as you can guess, in-
volve partial derivatives and are typically much harder.2 Next, the arbitrary constant
which arises in the integration of an ODE is typically solved via the specification of

2One of the “Millennium Problems” is to help the mathematical community arrive at a better understanding of the Navier-Stokes
equations, which are expressible through partial differential equations.



an initial condition, often expressed in the form y(0) = y0. If both the differential
equation and the initial condition are expressed, say by writing

dy

dx
= f(x, y), y(0) = y0,

we call the above an initial value problem, or IVP.

Practice Problems: Solve the following IVPs. (Unless it is convenient to do so, do
not attempt to write the solution y explicitly as a function of x.)

1.
dy

dx
= xy, y(0) = 1.

2. y
dy

dx
= x2, y(0) = 1.

3.
dy

dx
= −2x(y + 3), y(0) = 1.

4.
dy

dx
=
x2y + y

x2 − 1
, y(0) = 2.


