AP Calculus-Integration Practice

I. Integration by substitition.

Basic Idea: If $u=f(x)$, then $d u=f^{\prime}(x) d x$.
Example. We have

$$
\begin{array}{rlrl}
\int \frac{x d x}{x^{4}+1} & \begin{array}{c}
u \\
= \\
d x
\end{array}=x^{2} \\
& = & & \frac{1}{2} \int \frac{d u}{u^{2}+1} \\
& = & & \frac{1}{2} \tan ^{-1} u+C \\
& = & & \frac{1}{2} \tan ^{-1} x^{2}+C
\end{array}
$$

Practice Problems:

1. $\int x^{3} \sqrt{4+x^{4}} d x$
2. $\int \frac{d x}{x \ln x}$
3. $\int \frac{(x+5) d x}{\sqrt{x+4}}$
4. In each integral below, find the integer n that allows for an integration by substitution. Then perform the integration.
(a) $\int x^{n} \sqrt{1-x^{4}} d x$
(b) $\int \frac{x^{n}}{\sqrt{1-x^{4}}} d x \quad$ (there are two very natural choices for n).
(c) $\int \frac{x^{n}}{1+x^{10}} d x$ (there are two very natural choices for n).
(d) $\int \frac{x^{6}}{1+x^{n}} d x$
(e) $\int x^{n} e^{-x^{2}} d x$
(f) $\int x^{n} e^{2 x^{5}} d x$
(g) $\int x^{5} \sqrt{1-x^{n}} d x$
(h) $\int \frac{x^{6}}{\sqrt{1-x^{n}}} d x$
(i) $\int \frac{d x}{x^{n} \ln x}$
(j) $\int \frac{d x}{x^{n}(\ln x)^{7}}$
(k) $\int x^{n} \sin \left(x^{6}\right) d x$
(l) $\int \frac{\sin ^{n} x \cos x}{\sqrt{3+\sin ^{4} x}} d x$
(m) $\int \frac{\sin ^{3} x \cos x}{\sqrt{3+\sin ^{n} x}} d x$

II. Integration by Parts:

Basic Idea: $\int u d v=u v-\int v d u$
(Try to substitute u so that $\frac{d u}{d x}$ is simpler than u and so that v is no more complicated than $d v$.)

Example. We have

$$
\left.\int x \sin x d x \quad \begin{array}{cc}
u=x, \quad d v=\sin x d x & \\
& = \\
d u=d x, & v=-\cos x d x
\end{array}\right)
$$

Notice that in the above, setting $u=x$ yields $\frac{d u}{d x}=1$ (i.e., $d u=d x$), which is simpler and $d v=\sin x d x$ which gives $v=-\cos x$, which is no more complicated.

Practice Problems:

1. $\int x e^{-x / 10} d x$
2. $\int x^{2} e^{-x / 10} d x$.
3. $\int x^{2} \ln x d x$
4. $\int x^{n} \ln x d x \quad(n$ is an integer)
5. $\int x^{2} \sin x d x$
6. $\int x^{3} e^{-x^{2}} d x$
7. $\int x^{3} \sqrt{x^{2}+1} d x$
8. Assume that $\int f(x) d x=g(x)$, that $\int g(x) d x=h(x)$ and compute
(a) $\int x^{3} f\left(x^{2}\right) d x$
(b) $\int x^{2 n-1} f\left(x^{n}\right) d x$
9. $\int \sin ^{-1} x d x$
10. $\int\left(\sin ^{-1} x\right)^{2} d x$
11. $\int \tan ^{-1} x d x$
12. $\int \sec ^{3} \theta d \theta \quad$ (Hint: write $\sec ^{3} \theta=\sec \theta\left(1+\tan ^{2} \theta\right)$ and integrate $\sec \theta \tan ^{2} \theta$ by parts.)

III. Trigonometric Substitutions.

Basic Idea:

$\boldsymbol{a}^{\mathbf{2}}-\boldsymbol{x}^{\mathbf{2}}$ For expressions like $a^{2}-x^{2}$ substitute $x=a \sin \theta$. Then $x^{2}-x^{2}=a^{2} \cos ^{2} \theta$ and $d x=a \cos \theta d \theta$.
$\boldsymbol{a}^{\mathbf{2}}+\boldsymbol{x}^{\mathbf{2}}$ For expressions like $a^{2}+x^{2}$ substitute $x=a \tan \theta$. Then $x^{2}+x^{2}=a^{2} \sec ^{2} \theta$ and $d x=a \sec ^{2} \theta d \theta$.
$\boldsymbol{x}^{\mathbf{2}} \boldsymbol{-} \boldsymbol{a}^{\mathbf{2}}$ For expressions like $x^{2}-a^{2}$ substitute $x=a \sec \theta$. Then $x^{2}-a^{2}=\tan ^{2} \theta$, and $d x=\sec \theta \tan \theta d \theta$.

Example 1. We have

$$
\begin{array}{rlrl}
\int \sqrt{4-x^{2}} d x & \begin{aligned}
x= & 2 \sin \theta \\
& = \\
d x= & 2 \cos \theta d \theta
\end{aligned} & 4 \int \cos ^{2} \theta d \theta \\
& = & & 2 \int(1+\cos 2 \theta) d \theta \\
& = & & 2 \theta+\sin 2 \theta+C \\
& = & & 2 \sin ^{-1}\left(\frac{x}{2}\right)+2 \sin \theta \cos \theta+C \\
& = & & 2 \sin ^{-1}\left(\frac{x}{2}\right)+\frac{1}{2} x \sqrt{4-x^{2}}+C
\end{array}
$$

SECOND EXAMPLE. In many integrations involving a trig substitution, there is the need to integrate $\sec \theta$. This is easy but requires a trick:

$$
\begin{array}{rlrl}
\int \sec \theta d \theta & = & \int \frac{\sec \theta(\sec \theta+\tan \theta) d \theta}{\sec \theta+\tan \theta} \\
\begin{array}{cl}
u=\sec \theta+\tan \theta & = \\
d u=\sec \theta(\sec \theta+\tan \theta) d \theta &
\end{array} & \int \frac{d u}{u} \\
& = & & \ln |u|+C \\
= & & \ln |\sec \theta+\tan \theta|+C
\end{array}
$$

In an entirely similar fashion, one shows that $\int \csc \theta d \theta=-\ln |\csc \theta+\cot \theta|+C$.
Example 2. Here's one that uses the above ideas.

$$
\begin{aligned}
& \int \frac{\sqrt{a^{2}-x^{2}} d x}{x} \quad \begin{array}{c}
x=a \sin \theta \\
= \\
d x=a \cos \theta d \theta
\end{array} a \int \frac{\cos ^{2} \theta d \theta}{\sin \theta} \\
& =\quad a \int \frac{\left(1-\sin ^{2} \theta\right) d \theta}{\sin \theta} \\
& =\quad a \int(\csc \theta-\sin \theta) d \theta \\
& =\quad-a \ln |\csc \theta+\cot \theta|+a \cos \theta+C \\
& =\quad \sqrt{a^{2}-x^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}-x^{2}}}{x}\right|+C
\end{aligned}
$$

Practice Problems:

1. $\int \frac{\sqrt{9-x^{2}}}{x^{2}} d x$
2. $\int \frac{d x}{x \sqrt{1-x^{2}}}$
3. $\int \frac{d x}{x \sqrt{a^{2}+x^{2}}}$
4. $\int \sqrt{4+x^{2}} d x$ (Hint: see problem 12 page 3.)
5. $\int \frac{d x}{a^{2}-x^{2}}$ (It might be easier to do this by partial fractions.)
6. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x$
7. $\int \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$
8. $\int \sin ^{-1} x d x \quad($ Let $x=\sin \theta)$
9. $\int\left(\sin ^{-1} x\right)^{2} d x$
10. $\int \tan ^{-1} x d x$

IV. Integration by Partial Fractions.

Basic Idea: This is used to integrate rational functions. Namely, if $R(x)=\frac{p(x)}{q(x)}$ is a rational function, with $p(x)$ and $q(x)$ polynomials, then we can factor $q(x)$ into a product of linear and irreducible quadratic factors, possibly with multiplicities. For each power $(x-\alpha)^{n}$ of a linear factor, the expansion of $R(x)$ will contain terms of the form

$$
\frac{a_{1}}{x-\alpha}+\frac{a_{2}}{(x-\alpha)^{2}}+\cdots+\frac{a_{n}}{(x-\alpha)^{n}},
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are all real constants. For each power $\left(x^{2}+\alpha x+\beta\right)^{m}$ of an irreducible quadratic factor, then the expansion of $R(x)$ will contain terms of the form

$$
\frac{a_{1} x+b_{1}}{x^{2}+\alpha x+\beta}+\frac{a_{2} x+b_{2}}{\left(x^{2}+\alpha x+\beta\right)^{2}}+\cdots+\frac{a_{m} x+b_{m}}{\left(x^{2}+\alpha x+\beta\right)^{m}},
$$

where $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ are real constants.

The determination of the constants above is a purely algebraic process. For example, in decomposing the rational function $R(x)=\frac{x+1}{(x-2)\left(x^{2}+4\right)}$ we set this up as follows:

$$
\frac{x+1}{(x-2)\left(x^{2}+4\right)}=\frac{a}{x-2}+\frac{b x+c}{x^{2}+4} .
$$

At this juncture, there are a number of approaches. One is to multiply through, clearing all denominators and equating coefficients in the resulting polynomial equation:

$$
x+1=a\left(x^{2}+4\right)+(b x+c)(x-2) .
$$

This quickly yields

$$
\begin{array}{r}
a+b=0, \\
-2 b+c=1, \\
4 a-2 c=1,
\end{array}
$$

from which we conclude that $a=3 / 8, b=-3 / 8$, and $c=1 / 4$.
To compute the indefinite integral $\int R(x) d x$, we need to be able to compute integrals of the form

$$
\int \frac{a}{(x-\alpha)^{n}} d x \text { and } \int \frac{b x+c}{\left(x^{2}+\alpha x+\beta\right)^{m}} d x .
$$

Those of the first type above are simple; a substitution $u=x-\alpha$ will serve to finish the job. Those of the second type can, via completing the square, be reduced to integrals of the form $\frac{b x+c}{\left(x^{2}+a^{2}\right)^{m}} d x$. This involves a sum of two integrals: those of the form $\int \frac{b x}{\left(x^{2}+a^{2}\right)^{m}} d x$ can be computed via the substitution $u=x^{2}+a^{2}$; those of the form $\int \frac{c}{\left(x^{2}+a^{2}\right)^{m}} d x$ can be handled by the appropriate trigonometric substitution (viz., $x=a \tan \theta$).

From the above work, we may now finish our example.

$$
\begin{aligned}
\int \frac{x+1}{(x-2)\left(x^{2}+4\right)} d x & =\frac{3}{8} \int \frac{d x}{x-2}-\frac{1}{8} \int \frac{3 x-2}{x^{2}+4} d x \\
& =\frac{3}{8} \ln |x-2|-\frac{3}{16} \ln \left(x^{2}+4\right)+\frac{1}{8} \tan ^{-1}\left(\frac{x}{2}\right)+C .
\end{aligned}
$$

Practice Problems:

1. $\int \frac{5 x-3}{x^{2}-2 x-3} d x$
2. $\int \frac{6 x+7}{(x+2)^{2}} d x$
3. $\int \frac{2 x^{3}-4 x^{2}-x-3}{x^{2}-x 2-3} d x$
4. $\int \frac{d x}{x\left(x^{2}+1\right)}$
5. $\int\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}-2 x+5}\right) d x$
6. $\int \frac{x^{3}+2 x^{2}+2}{\left(x^{2}+1\right)^{2}} d x$

V . The $t=\tan \frac{1}{2} \theta$ substitution

Basic Idea: This technique is particularly useful in computing definite integrals having integrands of the form $\frac{1}{a+b \cos \theta}$ or $\frac{1}{a+b \sin \theta}$. If we let $t=\tan \frac{1}{2} \theta$, then using the double-angle identity for the tangent:

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A},
$$

we obtain immediately that

$$
\tan \theta=\frac{2 t}{1-t^{2}}
$$

From the picture depicted to the right, we obtain, therefore, that

$$
\sin \theta=\frac{2 t}{1+t^{2}} \text { and that } \cos \theta=\frac{1-t^{2}}{1+t^{2}} .
$$

EXAMPLE. We use the above to compute $\int_{0}^{\pi / 2} \frac{4}{3+5 \sin \theta} d \theta$.
With the substitution $t=\tan \frac{1}{2} \theta$, we have $\frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{1}{2} \theta=\frac{1+t^{2}}{2}$. From this it follows that $d \theta=\frac{2 d t}{1+t^{2}}$; we now proceed as follows:

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{4}{3+5 \sin \theta} d \theta \stackrel{t=}{ }=\frac{\tan \frac{1}{2} \theta}{=} \int_{0}^{1} \frac{4}{3+10 t /\left(1+t^{2}\right)} \times \frac{2}{1+t^{2}} d t \\
&=\int_{0}^{1} \frac{8}{3 t^{2}+10 t+3} d t \\
&=\int_{0}^{1}\left(\frac{3}{3 t+1}-\frac{1}{t+3}\right) d t \\
&=\ln (3 t+1)-\left.\ln (t+3)\right|_{0} ^{1} \\
&=\ln 3
\end{aligned}
$$

Practice Problems: ${ }^{1}$

1. $\int_{0}^{\pi / 2} \frac{3}{1+\sin \theta} d \theta$
2. $\int_{0}^{2 \pi / 3} \frac{3}{5+4 \cos \theta} d \theta$
3. $\int_{-\pi / 2}^{\pi / 2} \frac{3}{4+5 \cos \theta} d \theta$
4. $\int_{0}^{\pi / 2} \frac{5}{3 \sin \theta+4 \cos \theta} d \theta$

VI. Differential Equations-Variables Separable.

Basic Idea: The IB syllabus for Calculus (Core Topic 7) contains a component relating to a special class of differential equations, namely those having the variables separable. Specifically, this relates to those differential equations $\frac{d y}{d x}=f(x, y)$, where the function $f(x, y)$ can be written in the form $f(x, y)=g(x) h(y)$, for suitable functions g and h. Such a differential equation can, in principle, yield an implicit solution for y via separating the variables and integrating:

$$
\frac{d y}{d x}=g(x) h(y) \Rightarrow \frac{d y}{h(y)}=g(x) d x \Rightarrow \int \frac{d y}{h(y)}=\int g(x) d x
$$

Assuming that the integrations can be performed (which is a significant assumption!) we arrive at an equation of the type $H(y)=G(x)$, which defines y implicitly as a function of x.

[^0]EXAMPLE 1. Consider the differential equation $\frac{d y}{d x}=-3 x^{2} y$, subject to the initial condition $y(0)=2$. We proceed as above:

$$
\frac{d y}{d x}=-3 x^{2} y \Rightarrow \frac{d y}{y}=-3 x^{2} d x \Rightarrow \int \frac{d y}{y}=-\int 3 x^{2} d x \Rightarrow \ln |y|=-x^{3}+C .
$$

The above can be rendered more explicit by exponentiating both sides and setting $K=e^{C}$ (an arbitrary constant); the result is $y=K e^{-x^{3}}$. Finally, use the initial condition $y(0)=2: 2=K e^{0}=K$, and so the resulting solution is $y=2 e^{-x^{3}}$.

EXAMPLE 2. This time, we consider the so-called logistic differential equation

$$
\frac{d y}{d x}=a y(1-y), \quad \text { where } a>0 \text { is a constant, } y(0)=.2
$$

Upon separating the variables, we obtain

$$
\int \frac{d y}{y(1-y)}=\int a d x .
$$

Next, using the partial fraction decomposition $\frac{1}{y(1-y)}=\frac{1}{y}+\frac{1}{1-y}$, we obtain

$$
\int\left(\frac{1}{y}+\frac{1}{1-y}\right) d y=\int a d x
$$

from which it follows that

$$
\ln |y|-\ln |1-y|=a x+C \Rightarrow \frac{y}{1-y}=K e^{a x}
$$

Solving for y in terms of x is fairly easily done; the result is

$$
y=\frac{K e^{a x}}{1+K e^{a x}}=\frac{1}{1+B e^{-a x}},
$$

where $B=K^{-1}$, again, an arbitrary constant.
We conclude with a few words of terminology. What we have considered above are usually called ordinary differential equations, typically abbreviated ODE. These are to be distinguished from partial differential equations, which, as you can guess, involve partial derivatives and are typically much harder. ${ }^{2}$ Next, the arbitrary constant which arises in the integration of an ODE is typically solved via the specification of

[^1]an initial condition, often expressed in the form $y(0)=y_{0}$. If both the differential equation and the initial condition are expressed, say by writing
$$
\frac{d y}{d x}=f(x, y), \quad y(0)=y_{0}
$$
we call the above an initial value problem, or IVP.

Practice Problems: Solve the following IVPs. (Unless it is convenient to do so, do not attempt to write the solution y explicitly as a function of x.)

1. $\frac{d y}{d x}=x y, \quad y(0)=1$.
2. $y \frac{d y}{d x}=x^{2}, y(0)=1$.
3. $\frac{d y}{d x}=-2 x(y+3), y(0)=1$.
4. $\frac{d y}{d x}=\frac{x^{2} y+y}{x^{2}-1}, \quad y(0)=2$.

[^0]: ${ }^{1}$ These (and the example above) have been lifted from Sadler and Thorning, pp 500-501:

[^1]: ${ }^{2}$ One of the "Millennium Problems" is to help the mathematical community arrive at a better understanding of the Navier-Stokes equations, which are expressible through partial differential equations.

